

Assessing the quality of reduced representations of biomolecules

Marco Giulini

Decimation Mapping

protein in terms of atoms;

representations to 2^n .

decreases the number of possible CG

 $\sum_{i=1}^{n} \sigma_i = N.$

 S_{map} quantifies the amount of information lost upon any particular choice of

mapping with respect to the full atomistic system:

Italy

 $\mathbf{M}_{I}(\mathbf{r}) = \sigma_{i}\mathbf{r}_{i}, \ \sigma_{i} = 1$ for one I, 0 otherwise,

preserves an intuitive representation of the

Physics Department, University of Trento, via Sommarive, 14 I-38123 Trento,

Issue of Mapping

 $M = \{ \mathbf{M}_{l}(\mathbf{r}), l = 1, ..., N \}$

 $\mathsf{M}_{I}(\mathsf{r}) = \sum_{i=1}^{n} c_{Ii} \mathsf{r}_{\mathsf{i}} = \mathsf{R}_{\mathsf{I}}$

N(n) is the number of CG sites (atoms).

the selection of degrees of freedom

operated by the Mapping.

The accuracy of any CG model depends on

Introduction

All-atom simulations of biological systems are computationally expensive and provide us with a huge amount of data: extracting relevant information is not trivial.

Coarse Graining (CG): effective reduction of the degrees of freedom of a complex system. It requires a reduced representation (mapping) of the high-resolution system and the definition of *effective* interactions among the chosen degrees of freedom.

Mapping Entropy

 U^0 is the potential of mean force, i.e. the most accurate set of interactions that can be introduced in a system given a mapping \mathbf{M} .

Numerical Implementation

Ingredients:

- atomistic Molecular Dynamics simulation to extract configurations on which we compute S_{map} ;
- optimisation algorithm: Monte Carlo simulated annealing. At each step two atoms are swapped in the mapping and the move is accepted using Metropolis rule.

Results: more than Coarse-Graining

- ▶ C_{α} and Backbone mapping: local maxima of S_{map} . Neglecting the side chains is detrimental;
- atoms with important biological function are conserved with high probability by the optimisation.

Deep learning-enhanced sampling approach

Deep Graph Networks

Challenge: both the atomistic simulation and the optimisation process are

Probability of conserving atoms in the optimised mappings: case of Adenylate Kinase.

0.07

computationally heavy => machine learning can be leveraged to extract the value of mapping entropy in a much shorter amount of time. Our approach: we treat the static structure of the protein as a graph and we employ a Deep Graph Network (DGN) to infer the value of S_{map} . The DGN proves to be accurate and remarkably efficient (speed-up $\sim 10^5$).

Wang Landau Sampling

We incorporate the trained network into the Wang Landau sampling scheme to reconstruct the mapping entropy landscape of proteins.

Tamapin

Tamapin's $P(S_{map})$: algorithmic (blue) vs DGN (green)

References

[1] M. Giulini, R. Menichetti, M. S. Shell, and R. Potestio, "An information-theory-based approach for optimal model reduction of biomolecules," Journal of Chemical Theory and Computation, vol. 16, no. 11, pp. 6795-6813, 2020

[2] F. Errica, M. Giulini, D. Bacciu, R. Menichetti, A. Micheli, and R. Potestio, "Accelerating the identification of informative reduced representations of proteins with deep learning for graphs," 2020.

Acknowledgments

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme

http://variamols.physics.unitn.eu

marco.giulini@unitn.it