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Introduction

All-atom simulations of biological systems are
computationally expensive and provide us with a
huge amount of data: extracting relevant
information is not trivial.
Coarse Graining (CG): effective reduction of the
degrees of freedom of a complex system. It requires
a reduced representation (mapping) of the
high-resolution system and the definition of effective
interactions among the chosen degrees of freedom.

Issue of Mapping

M = {MI (r), I = 1, ...,N}

MI (r) =
n∑

i=1

cIiri = RI

N (n) is the number of CG sites (atoms).
The accuracy of any CG model depends on
the selection of degrees of freedom
operated by the Mapping.

Decimation Mapping

MI (r) = σiri , σi = 1 for one I , 0 otherwise,
n∑

i=1

σi = N .

I preserves an intuitive representation of the
protein in terms of atoms;

I decreases the number of possible CG
representations to 2n.

Mapping Entropy

U0 is the potential of mean force, i.e. the most accurate set of
interactions that can be introduced in a system given a mapping M.

Smap quantifies the amount of information lost upon any particular choice of
mapping with respect to the full atomistic system:

Smap = kB

∫
dr pr (r) ln

[
V n

V N

pr (r)

pR(M(r))

]
≥ 0

where pr (r) (pR(M(r))) is the probability of the high (low) resolution system.
In the case of decimation mapping, Smap of a CG macrostate can be
approximated with the variance of energies of AT configurations that map onto it.
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Numerical Implementation

Ingredients:

I atomistic Molecular Dynamics simulation to extract configurations on
which we compute Smap;

I optimisation algorithm: Monte Carlo simulated annealing. At each
step two atoms are swapped in the mapping and the move is accepted
using Metropolis rule.

Results: more than Coarse-Graining

I Cα and Backbone mapping: local maxima of Smap. Neglecting the side
chains is detrimental;

I atoms with important biological function are conserved with high
probability by the optimisation. Probability of conserving atoms in the optimised mappings:

case of Adenylate Kinase.

Deep learning-enhanced sampling approach

Deep Graph Networks

Challenge: both the atomistic simulation and the optimisation process are
computationally heavy => machine learning can be leveraged to extract
the value of mapping entropy in a much shorter amount of time.
Our approach: we treat the static structure of the protein as a graph and
we employ a Deep Graph Network (DGN) to infer the value of Smap. The
DGN proves to be accurate and remarkably efficient (speed-up ∼ 105).

Wang Landau Sampling

We incorporate the trained network into the Wang Landau sampling
scheme to reconstruct the mapping entropy landscape of proteins.

Tamapin’s P(Smap): algorithmic (blue) vs DGN (green).
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