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Space-based GW observation

* Planned for launch in 2034, LISA will be able to
detect sub-Hz Gravitational Waves (GW):

* The three-arm constellation will orbit the Sun in an Earth-
trailing orbit, smoothly changing its orientation.

* The chosen 2.5-million km armlength will allow for the
required sensitivity to the gravitational strain within the
sensitive frequency band, down to ~100 pHz.

* The complex interferometric system will detect GWs as
the time-varying frequency Doppler shift between the
emitted and received laser beams.

* To cope with the solar radiation pressure fluctuations, laser
beams will bounce off free-falling 2kg Gold-Platinum
Test-Masses (TM).
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Space-based GW observation
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Space-based GW observation
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SPaCe-baSEd GW

* Planned for launch in 2034, LISA will be able to
detect sub-mHz Gravitational Waves (GW):

* The three-arm constellation will orbit the Sun in an Earth-
trailing orbit, smoothly changing its orientation.

* The chosen 2.5-million km armlength will allow for the
required sensitivity to the gravitational strain within the
sensitive frequency band.

e The complex interferometric system will detect GWs as
the time-varying frequency Doppler shift between the
emitted and received laser beams.

* To cope with the solar radiation pressure fluctuations, laser
beams will bounce off free-falling 2kg Gold-Platinum Test-
Masses (TM).

* Force noise acting on the TMs, phase-meter noise and
laser frequency fluctuation noise will mimic the GW behavior.
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Space-based ‘

* Planned for launch in 2034, LISA will be able to
detect sub-mHz Gravitational Waves (GW):

* The three-arm constellation will orbit the Sun in an Earth-
trailing orbit, smoothly changing its orientation.

* The chosen 2.5-million km armlength will allow for the
required sensitivity to the gravitational strain within the
sensitive frequency band.

e The complex interferometric system will detect GWs as ll segnac(o) " Unequal-Arm Michelson () Beacon (P)
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emitted and received laser beams.
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Force noise and

* The noise performance was investigated in the
LISA Pathfinder (LPF) Mission, launched in 2015 and
completed in 2017. Electrode Housing

* Demonstration mission: first sub-pm IFO flown in space, / Interferometric IFO
hardware testing, drag-free control technology testing, etc. readout: Ag(t)

* Main scientific measurement: the out-of-loop differential
acceleration between two LISA-like Gold-Platinum TM,
along a “shrunk” 38cm LISA arm.

 The TMs were caged in Electrode Housings, that provided
a capacitive position readout (GRS) and a force feedback, to
close the measurement loop and keep the system linear.

* Need for positioning control loop, actuation forces on TM1, TM2. . R
Actuation forces along sensitive axis on TM2. Optical Bench, ’
* UV photoelectric discharge. four interferometers

Capacitive (GRS)
readout: Ag(t)
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Force noise and LISA Pathfinder

* The noise performance was investigated in the
LISA Pathfinder (LPF) Mission, launched in 2015 and

completed in 2017. 4 TN, -
: . . . W] - : 2 %ﬁ g
* Demonstration mission: first sub-pm IFO flown in space, = PN SR>
hardware testing, drag-free control technology testing, etc. Nt kil ,..l”’LL/:f. ’///W/////
* Main scientific measurement: the out-of-loop differential Y vk n 4 ”JA“ '5? ‘ /// =
acceleration between two LISA-like Gold-Platinum TM, e P A, 3 @: 7

along a “shrunk” 38cm LISA arm.

 The TMs were caged in Electrode Housings, that provided
a capacitive position readout (GRS) and a force feedback, to
close the measurement loop and keep the system linear.

* Need for positioning control loop, actuation forces on TM1, TM2.
Actuation forces along sensitive axis on TM2.

* UV photoelectric discharge.
* Vacuum Enclosures independently sealed and vented to space.
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Force noise and LISA Pathfinder

* The noise performance was investigated in the
LISA Pathfinder (LPF) Mission, launched in 2015 and

completed in 2017.
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Force noise and LISA Pathfinder
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Force noise and LISA Pathfinder
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What remains to be explained?

Low-freq. excess noise!

Femto-Newton glitches!

Fit with decaying exponentials
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Spurious events “glitches” on LPF >

* Detected as differential acceleration peaks. Unknown nature.
* Pure force events along IFO-axis, with no torque

Fit with decaying exponentials

counterpart.* — Resials

- Fit

Data

* Wide range of duration: ~seconds to hours.

* The strongest ones are measured both by IFO and GRS.

* No magnetic anomalies, no micrometeorites, no spurious voltages, no laser
intensity fluctuations, no external sources.

* Rate reversibly increased after lowering temperature to 0°C.

* A deeper understanding of their origin could help design and
forecasts on LISA.

Which source meets
* Phys. Rev. Lett. 120, 061101(2018) all the measured properties?
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Glitches as outg S

* Highly I|ker source: outgassing gas bursts from pores.
* Long-lasting timescale: molecular dynamics in pores.

* No overall torque: molecules entering Electrode Housing
through x-axis holes.

* Rate increased at low temperature: mechanical stress. Electrode

* First candidate: Internal Balance Mass (IBM),
made of (porous?) tungsten/copper 90/10 alloy.

Housing, GRS __
7
Test Mass

P R\
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front-side, LPF geometry.
sasi) i (CINFN




Interferometer glitches?
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* The LISA Mission will detect gravitational waves in the low-frequency spectrum,
in the next decades. LISA is currently in its development Phase A.

 LISA Pathfinder exceeded its requirements, showing that space is the
right place for the detection of low-frequency GWs.

* Research is still going on about features of the LPF noise:
* Excess low-frequency noise, whose origin is still unknown.

* One-sided glitches could be explained as outgassing bursts striking the Test-Masses,
but there are several open questions that need to be answered.

* Two-sided quick glitches might be due to events in the interferometric
readout, but their true origin still needs to be assessed.

e Research is going on, to carefully forecast the noise
performance of the LISA Mission.

& 0ur new UTN LISA website is being set up these days! Coming soon!

lllll



